

REPORT DOCUMENTATION PAGE
Form Approved

OMB No. 074-0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining
the data needed, and completing and reviewing this collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for
reducing this burden to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of
Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503
1. AGENCY USE ONLY (Leave
blank) 2. REPORT DATE

APRIL 2003
3. REPORT TYPE AND DATES COVERED
MARCH - APRIL 2003

4. TITLE AND SUBTITLE
GRAPHICS FILE CONVERSION: DADS “G.MOD” TO “.GEO” FORMAT

5. FUNDING NUMBERS

6. AUTHOR(S)
Wesley Bylsma

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

8. PERFORMING ORGANIZATION
 REPORT NUMBER

U.S. Army Tank-automotive and
Armaments Command/Research,
Development and Engineering Center
ATTN: AMSTA-TR-N/MS157
Warren, MI 48397-5000

13863

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING / MONITORING
 AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION / AVAILABILITY STATEMENT

Approved for public release: Distribution is unlimited.

12b. DISTRIBUTION CODE

A

13. ABSTRACT (Maximum 200 Words)

The following report documents the details of converting from the Dynamic Analysis and Design System (DADS) “g.mod"
graphics file format to the “.geo" graphics file format. The file format of each type is discussed and the process
described. A C program is included that automates the conversion process.

14. SUBJECT TERMS
graphics file conversion, g.mod, .geo, movie.byu

15. NUMBER OF PAGES
10

 16. PRICE CODE

17. SECURITY CLASSIFICATION
 OF REPORT

Unclassified

18. SECURITY CLASSIFICATION
 OF THIS PAGE

Unclassified

19. SECURITY CLASSIFICATION
 OF ABSTRACT

Unclassified

20. LIMITATION OF ABSTRACT

Unclassified
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)

Prescribed by ANSI Std. Z39-18
298-102

TR 13863

Graphic File Conversion: DADS “g.mod” to ”.geo”
Format

Wesley Bylsma

U.S. Army Tank-automotive and Armaments Command
Research, Development and Engineering Center

ATTN: AMSTA-TR-N/MS157
Warren, MI 48397-5000

April 2003

Contents

List of figures ii

List of Tables iii

1 Introduction 1

2 The “.geo” Format 1
2.1 Header . 1
2.2 Parts . 2
2.3 Points . 3
2.4 Polygons . 3

3 The “g.mod” Format 4
3.1 Number of Geometry Elements . 5
3.2 Number of Nodes . 5
3.3 Node List . 5
3.4 Number of Edges . 5
3.5 Number of Poly-pointers . 5
3.6 Polygon List . 5
3.7 Plane Equations . 6

4 Summary 6

Appendix 7

A Program Listing 7

i

List of Figures

1 Example “.geo File” File . 2
2 Example “g.mod” File . 4

ii

List of Tables

1 Header . 2
2 Parts . 3
3 Points . 3
4 Polygon . 4
5 Points . 4

iii

Graphic File Conversion: DADS “g.mod” to ”.geo”
Format

The following report documents the details of converting from the Dynamic
Analysis and Design System (DADS) “g.mod” graphics file format to the “.geo”
graphics file format. The file format of each type is discussed and the process
described. A C program is included that automates the conversion process.

1 Introduction

Visualization of multibody dynamics is an important technique used to convey the
physical interpretation of ground vehicle system performance. Many of the current
multibody dynamics simulation codes interface with a graphics system to achieve
this. Issues arise, however, when multiple simulation codes, each from a different
vendor, are used for analysis. Each particular implementation handles storage of
graphical entities differently. To allow the same graphical representation of a vehicle
between different simulation codes requires graphic file format conversion. In this
particular application, the Dynamic Analysis and Design System (DADS) multibody
dynamics code uses an undocumented1 “g.mod” format. This format needs to
be converted directly to other formats for use in other programs for visualization.
Conversion of this format directly to the “.geo” format is the topic of this report.

In order to better understand the process, we will begin with a description of
the final format we desire. This will give us an objective that will help explain why
we are doing what we are doing and provide a focus as we transform the “g.mod”
format to the desired “.geo” format.

2 The “.geo” Format

The “.geo” format or “Movie.BYU” (“.byu”) file format originated from Brigham
Young University. It describes a geometric shape in terms of its surfaces. It consists
simply of an ASCII text file with fixed field sizes and positions.2 When the number
of values on a single line are exceeded, multiple lines are used. If the values on the
last line of a section does not fill the line completely, that line is truncated. An
example is shown in Figure 1.

The “.geo” file is composed of four main sections: header, parts, points, and
polygons.

2.1 Header

The header section contains fixed size and position fields that give the overall extent
of its contents. Table 1 gives the order and size for each part of the header section.

1LMS Intl. technical support claims that there is no written documentation to this format.
2see “lc.cray.com/doc/movie”.

1

Table 1: Header

No. of Parts I8
No. of Points I8

No. of Polygons I8
No. of Lines I8

The first field (“No. of Parts”) gives the count for the total number of parts3 in
the file. The second field (“No. of Points”) gives the count for the total number of
points that make up the vertices of the line segments for each polygon face of each
part.4 The third field (“No. of Polygons”) gives the count for the total number of
polygons that make up all the parts. The fourth field (“No. of Lines”) gives the
count for the total number of point indexes that make up the line segments of each
polygon face. Note that the same point may be referenced more than once, such
as in adjoining edges of two polygons.

In the example given, Figure 1, there is one (1) part with eight (8) points (x,y,z)
that make up 24 references to these points that consist of six (6) polygon faces. In
C, the format for this section is

"%8d%8d%8d%8d" .

2.2 Parts

The Parts section contains the beginning and ending index of the polygons that
make up that part as described in Table 2. The example in Figure 1 has only
one part and thus contains only one entry5. One line can hold up to five (5) part
entries.6 For six (6) parts, the seventh entry would be on an additional line by

3This automatically implies the capability to contain multiple parts in one file and is
pointed out here to make the reader aware–although it should be obvious.

4Points in this case refer to a set of x, y, and z values.
5One entries includes the beginning and ending part index so one entry actually consists

of two values
65 * 2 numbers = 10 I8 numbers.

1 8 6 24

1 6

0.00000E+00-8.00000E+02-1.20000E+01 0.00000E+00-7.99000E+02 0.00000E+00

0.00000E+00 7.99000E+02 0.00000E+00 0.00000E+00 8.00000E+02-1.20000E+01

8.00000E+02-8.00000E+02-1.20000E+01 8.00000E+02-7.99000E+02 0.00000E+00

8.00000E+02 7.99000E+02 0.00000E+00 8.00000E+02 8.00000E+02-1.20000E+01

5 6 7 -8 4 3 2 -1 5 1

2 -6 6 2 3 -7 7 3 4 -8

8 4 1 -5

Figure 1: Example “.geo File” File

2

Table 2: Parts

Beg. Polygon No. I8
End.Polygon No. I8

itself.7 Notice that the part indexes assume a monotonic order. The number of
entries in this section must match the number of parts defined in the header.

In C, the format of this section is

"%8d%8d"

per entry and can be repeated up to 5 times per line.

2.3 Points

The points section contains the two entries per line for each point.8 The format

Table 3: Points

X Coordinate E12.5
Y Coordinate E12.5
Z Coordinate E12.5

for each is given in Table 3. The number of entries in this section must match the
number of points in the header. In C, the format of this section is

"%12.5E%12.5E%12.5E"

per entry and can be repeated twice per line.

2.4 Polygons

The polygon section contains a set of index values to points defined in the Points
section the are the vertices of connected sets of points that compose line segments
that make up the polygon faces of each part. A negative index value indicates the
end of a sequence or polygon face definition. The beginning and ending points will
automatically be connected to close the polygon face.

In the polygon section, up to ten (10) entries9 per line are allowed. A full line
would consist of 10 * I8 = 80 characters.

The number of entries in this section must match the number of lines in the
header. The number of negative terminated sequences must match the number of
polygons in the header. In C, the format for this section is

7Two entries = 2 * I8 = 16 characters
8Each point contains an x, y, and z value so two entries = 2 * 3 * E12.5 = 72 characters
9Each entry is defined in Table 4.

3

Table 4: Polygon

Point No. I8

"%8d"

per entry and can be repeated up to 10 times per line.

3 The “g.mod” Format

While the “g.mod” format is undocumented, it is not too difficult to see where it
contains the information needed to create a “.geo” file. Figure 2 shows an example
of this format. (converted into the “.geo” format it is the same as Figure 1)

5C3663C5 (Magic_Number)
0 (Module_Node)

8F (Relative_Seek_Value)
9 (Number_of_Nodes)
(Part_Name)
bump_pot
(Node_List)
0 0 0
0 -800 -12
0 -799 0
0 799 0
0 800 -12
800 -800 -12
800 -799 0
800 799 0
800 800 -12
1 (Module_Poly)

75 (Relative_Seek_Value)
24 (Number_of_Edges)
(Part_Name)
bump_pot
(Polygon_List)
5 6 7 -8
4 3 2 -1
5 1 2 -6
6 2 3 -7
7 3 4 -8
8 4 1 -5

2 (Module_Pypnt)
51 (Relative_Seek_Value)

6 (Number_of_Poly-pointers)
(Part_Name)
bump_pot
(Poly-pointers)
0 4 8 12 16 20
6 (Module_Plane)

B3 (Relative_Seek_Value)
6 (Number_of_Plane_Equations)
(Part_Name)
bump_pot
(Plane_Equations)
1 0 0 -800 0
-1 0 0 0 0
0 -0.996546 0.0830455 -796.24 0
0 0 1 0 0
0 0.996546 0.0830455 -796.24 0
0 0 -1 -12 0
7 (Module_Geltype)

51 (Relative_Seek_Value)
1 (Number_of_Geometry_Elements)
(Part_Name)
bump_pot
(Element_Type_List)
Extrude

Figure 2: Example “g.mod” File

Table 5 shows the matching section names for each format.

Table 5: Points

“.geo” “g.mod”
No. of Parts Number of Geometry Elements

No. of Points Number of Nodes
No. of Polygons Number of Poly-pointers

No. of Lines Number of Edges
Points Node List
Lines Polygon List

Since the format is not specified, a ”brute force” method is taken in reading
the file. No optimization or performance claims are made. Each section is searched
from the beginning of the file since no assumptions are made as to there relative
location within it. Normal operation of the conversion program is to give an input

4

and output file name. If the output file name (.geo) is not given, the program will
replace the input file suffix (.mod) with (.geo) if no file of the same name already
exists. It is assumed that the complete contents of the file can be read into memory
since no memory paging is used. Data is read into memory with “read gmod”
and written out with “write geo”. White space is used as delimiters since no fixed
format is defined.

3.1 Number of Geometry Elements

As shown in Figure 2, this section corresponds to the “No. of Parts” section in
Table 5. It gives the count for the total number of parts in the “g.mod” file. While
this number is read in, it is assumed to be one (1)–only one part per file.

3.2 Number of Nodes

This section corresponds to the “No. of Points” section in Table 5. It gives the
total number of points that make up the part.

3.3 Node List

This section corresponds to the “Points” section in Table 5. It gives a list of the x,
y, and z coordinates that makeup each point. There must be the same number in
this list as indicated in section 3.2. Each point is on a separate line and the x, y,
and z components are all on one line delimited by white space.

3.4 Number of Edges

This section corresponds to the “No. of Lines” section in Table 5 making up the
edges composing the part. It gives the total number of index values to points that
makeup the polygons.

3.5 Number of Poly-pointers

This section corresponds to the ”No. of Polygons” section in Table 5. It gives the
number of pointers into the “Polygon List”. Since only one part is assumed, the
beginning polygon reference will be one (1) and the ending will be the same as this
number. Under this assumption the “Poly-Pointer” section is not read in.

3.6 Polygon List

This section corresponds to the “Lines” section in Table 5. It is an index into the
“Node List” for each point in the polygon. The end of a polygon is indicated by a
negative value.

5

3.7 Plane Equations

This section does not have a corresponding part in the “.geo” file format as outlined
in Table 5. The “.geo” format uses the direction of the traversed points with the
“right-hand-rule” to determine the normal direction. (in the face of the page,
counter-clockwise would point up, clockwise down) Other formats, such as stereo
lithography files handle normals directly–so we mention this section for interest. Five
(5) coefficients per line correspond to the coefficients of the plane equation that
define the normal. This section of the file is not used for this conversion process.

4 Summary

At this point we have established a relatively simple procedure to convert “g.mod”
files into “.geo” files. The “g.mod” format differs slightly from the “.geo” format in
that it does not have a fixed format, but is “free-form” (each line uses white space
to delimit). It also contains normal information. Besides those two differences and
different section name conventions embedded in the file–there is great similarity in
content, which allows easy conversion.

References

[1] DADS 9.6 User’s Guide, “2.2 What’s in a Project?”, LMS International
(www.lmsintl.com).

[2] http://myfileformats.com/ (movie.byu).

6

Appendix

A Program Listing

#include <stdio.h>

#include <stdlib.h> /* calloc,fgets */

#include <string.h> /* strstr */

/*---GMOD2GEO V1.0---

---remember .byu format not zero indexed but .wrl and C are!

---argv[0] = program name

---27FEB03 - created version 1.0

*/

#define LINE_LEN 1024

void read_gmod(FILE *in);

void write_geo(FILE *out);

typedef struct { float x,y,z; } P3;

/*---GEO GLOBALS---*/

int geo_nprt,geo_npts,geo_nply,geo_nlin; /* parts, points, poly’s, lines */

P3 *geo_pts; /*geo_pts[npts];*/ /* parts */

int *geo_bprts, *geo_eprts; /* beg and end of parts */

/*int *geo_ply;*/ /* poly’s */

int *geo_lin; /* lines (pts in poly) */

int geo_cntl; /* counter for points and lines */

void main(int argc, char *argv[])

{

FILE *in, *out;

char margv2[LINE_LEN];

char *ptr;

/*int i; for (i = 0; i < argc; i++) printf("%d.[%s]\n",i,argv[i]);*/

if (argc != 3)

{

strcpy(margv2,argv[1]);

ptr = strstr(margv2,".mod");

if (ptr != NULL)

{

strcpy(ptr,".geo");

}

else

{

printf("Use: program [input g.mod] [output.geo]\n");

exit(1);

}

}

else

{

strcpy(margv2,argv[2]);

}

printf("\n\n\nGMOD2GEO 1.0\n\n");

in = fopen(argv[1],"r");

if ((out = fopen(margv2,"r")) == NULL)

{

out = fopen(margv2,"w");

}

else

{

printf("File [%s] already exists.\n\n",margv2);

exit(1);

}

printf("Processing %s ...\n",argv[1]);

read_gmod(in);

fclose(in);

write_geo(out);

fclose(out);

free((P3 *)geo_pts);

free((int *)geo_bprts);

free((int *)geo_eprts);

/* free((int *)geo_ply);*/

free((int *)geo_lin);

printf("\n\n\nDone.\n\n");

}

void read_gmod(FILE *in)

{

char *valc=NULL;

char line[LINE_LEN];

int val = 0;

7

int i, j, k;

/*---READ GMOD DATAFILE AND SETUP PARAMETERS---*/

/*---GET PARTS---*/

/*---assume only one part---*/

rewind(in);

while (1)

{

valc = fgets(line,LINE_LEN,in);

if (valc <= 0)

{

break;

printf("ERROR READING Number_of_Geometry_Elements\n");

exit(1);

}

if (strstr(line,"Number_of_Geometry_Elements") != NULL)

{

val = sscanf(&line[0],"%d", &geo_nprt);

break;

}

}

/*---GET NO NODES---*/

rewind(in);

while (1)

{

valc = fgets(line,LINE_LEN,in);

if (valc <= 0)

{

break;

printf("ERROR READING Number_of_Nodes\n");

exit(1);

}

if (strstr(line,"Number_of_Nodes") != NULL)

{

val = sscanf(&line[0],"%d", &geo_npts);

geo_npts=geo_npts-1;

break;

}

}

/*---GET NODE LIST---*/

rewind(in);

while (1)

{

valc = fgets(line,LINE_LEN,in);

if (valc <= 0)

{

break;

printf("ERROR READING Node_List\n");

exit(1);

}

if (strstr(line,"Node_List") != NULL)

{

geo_pts = (P3 *) calloc(geo_npts,sizeof(P3));

/*---allocate part poly index now---*/

geo_bprts = (int *)calloc(geo_nprt,sizeof(int));

geo_eprts = (int *)calloc(geo_nprt,sizeof(int));

/*---READ IN PTS ---*/

valc = fgets(line,LINE_LEN,in);

for (i = 0; i < geo_npts; i++)

{

valc = fgets(line,LINE_LEN,in);

val = sscanf(line,"%f %f %f", &(geo_pts+i)->x, &(geo_pts+i)->y, &(geo_pts+i)->z);

if (val <= 0)

{

printf("ERROR READING Node_List\n");

exit(1);

}

}

break;

}

}

/*---GET NO LINES---*/

rewind(in);

while (1)

{

valc = fgets(line,LINE_LEN,in);

if (valc <= 0) break;

if (strstr(line,"Number_of_Edges") != NULL)

{

val = sscanf(&line[0],"%d", &geo_nlin);

if (val <= 0)

{

printf("ERROR READING Number_of_Edges\n");

exit(1);

}

}

}

8

/*---GET NO POLY’s---*/

rewind(in);

while (1)

{

valc = fgets(line,LINE_LEN,in);

if (valc <= 0) break;

if (strstr(line,"Number_of_Poly-pointers") != NULL)

{

val = sscanf(&line[0],"%d", &geo_nply);

break;

}

}

/*---READ IN LINES AND CREATE POLY’S INDEX TO THEM---*/

rewind(in);

while (1)

{

valc = fgets(line,LINE_LEN,in);

if (valc <= 0) break;

if (strstr(line,"Polygon_List") != NULL)

{

/*---READ IN LINS ---*/

geo_lin = (int *)calloc(geo_nlin,sizeof(int));

j=0;

i=0;

valc = fgets(line,LINE_LEN,in);

if (valc <= 0)

{

printf("ERROR READING Polygon_List\n");

exit(1);

}

while (i < geo_nlin)

{

val = sscanf(&line[j],"%d%n", geo_lin+i,&k);

if (val == -1)

{

valc = fgets(line,LINE_LEN,in);

j=0;

if (valc ==NULL)

{

printf("ERROR READING Polygon_List\n");

exit(1);

}

}

else

{

i = i + 1;

j = j + k;

}

}

/*---assumes only 1 part---*/

geo_bprts[0] = 1;

geo_eprts[0] = geo_nply;

}

}

}

void write_geo(FILE *out)

{

int i,geo_cntl;

fprintf(out,"%8d%8d%8d%8d\n",geo_nprt, geo_npts, geo_nply, geo_nlin);

/*---WRITE OUT PARTS DATA ---*/

for (i = 0; i < geo_nprt; i++)

{

fprintf(out,"%8d%8d\n",*(geo_bprts+i),*(geo_eprts+i));

}

/*---WRITE OUT PTS ---*/

for (i = 0; i < geo_npts; i=i+2)

{

if (i+1 < geo_npts)

{

fprintf(out,"%12.5E%12.5E%12.5E%12.5E%12.5E%12.5E\n", (geo_pts+i)->x, (geo_pts+i)->y, (geo_pts+i)->z,

(geo_pts+i+1)->x, (geo_pts+i+1)->y, (geo_pts+i+1)->z);

}

else

{

fprintf(out,"%12.5E%12.5E%12.5E\n", (geo_pts+i)->x, (geo_pts+i)->y, (geo_pts+i)->z);

}

}

/*---WRITE OUT LINES---*/

geo_cntl = 0;

for (i = 0; i < geo_nlin; i++)

{

fprintf(out,"%8d",geo_lin[i]);

geo_cntl++;

if (geo_cntl >= 10)

{

9

geo_cntl = 0;

fprintf(out,"\n");

}

}

fprintf(out,"\n");

}

10

